天天热头条丨MediaPipe 集成人脸识别,人体姿态评估,人手检测模型
上期文章,我们介绍了MediaPipe Holistic的基础知识,了解到MediaPipe Holistic分别利用MediaPipe Pose,MediaPipe Face Mesh和MediaPipe Hands中的姿势,面部和手界标模型来生成总共543个界标(每手33个姿势界标,468个脸部界标和21个手界标)。
对于姿势模型的精度足够低以至于所得到的手的ROI仍然不够准确的情况,但我们运行附加的轻型手重新裁剪模型,该模型起着的作用,并且仅花费了手模型推断时间的10%左右。
MediaPipe
(相关资料图)
MediaPipe 是一款由 Google Research 开发并开源的多媒体机器学习模型应用框架。在谷歌,一系列重要产品,如 、Google Lens、ARCore、Google Home 以及 ,都已深度整合了 MediaPipe。
MediaPipe图片检测
作为一款跨平台框架,MediaPipe 不仅可以被部署在服务器端,更可以在多个移动端 (安卓和苹果 iOS)和嵌入式平台(Google Coral 和树莓派)中作为设备端机器学习推理 (On-device Machine Learning Inference)框架。
一款多媒体机器学习应用的成败除了依赖于模型本身的好坏,还取决于设备资源的有效调配、多个输入流之间的高效同步、跨平台部署上的便捷程度、以及应用搭建的快速与否。
基于这些需求,谷歌开发并开源了 MediaPipe 项目。除了上述的特性,MediaPipe 还支持 TensorFlow 和 TF Lite 的推理引擎(Inference Engine),任何 TensorFlow 和 TF Lite 的模型都可以在 MediaPipe 上使用。同时,在移动端和嵌入式平台,MediaPipe 也支持设备本身的 GPU 加速。
MediaPipe 主要概念
MediaPipe 的核心框架由 C++ 实现,并提供 Java 以及 Objective C 等语言的支持。MediaPipe 的主要概念包括数据包(Packet)、数据流(Stream)、计算单元(Calculator)、图(Graph)以及子图(Subgraph)。数据包是最基础的数据单位,一个数据包代表了在某一特定时间节点的数据,例如一帧图像或一小段音频信号;数据流是由按时间顺序升序排列的多个数据包组成,一个数据流的某一特定时间戳(Timestamp)只允许至多一个数据包的存在;而数据流则是在多个计算单元构成的图中流动。MediaPipe 的图是有向的——数据包从数据源(Source Calculator或者 Graph Input Stream)流入图直至在汇聚结点(Sink Calculator 或者 Graph Output Stream) 离开。
MediaPipe 的核心框架
若我们想使用MediaPipe,首先,在我们的电脑cmd命令框中输入python –m pip install MediaPipe安装第三方模型,然后我们便可以使用代码来进行图片或者视频的检测了,此模型最主要的优点是不需要我们下载预训练模型,只是安装上其mediapipe包即可
MediaPipe 图片检测
Mediapipe 模型的图片代码检测
import cv2import mediapipe as mpmp_drawing = mp.solutions.drawing_utilsmp_holistic = mp.solutions.holisticfile = "4.jpg"holistic = mp_holistic.Holistic(static_image_mode=True)image = cv2.imread(file)image_hight, image_width, _ = image.shapeimage = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)results = holistic.process(image)
首先,我们导入需要的第三方库,并配置一下需要画图的点的尺寸,线的尺寸以及颜色等,这些信息都可以自行修改,这里我们直接引用官方的配置进行设计(
mp.solutions.drawing_utils函数)
然后定义一个holistic检测模型函数
mp_holistic = mp.solutions.holisticfile = "4.jpg"holistic = mp_holistic.Holistic(static_image_mode=True)
然后使用我们前期介绍的opencv的相关知识从系统中读取我们需要检测的图片,并获取图片的尺寸
image = cv2.imread(file)image_hight, image_width, _ = image.shape
由于OpenCV默认的颜色空间是BGR,但是一般我们说的颜色空间为RGB,这里mediapipe便修改了颜色空间
然后使用我们前面建立的holistic检测模型,对图片进行检测即可
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)results = holistic.process(image)
模型检测完成后的结果保存在results里面,我们需要访问此结果,并把检测到的人脸,人手,以及姿态评估的数据点画在原始检测的图片上,以便查看
if results.pose_landmarks: print(f"Nose coordinates: ("f"{results.pose_landmarks.landmark[mp_holistic.PoseLandmark.NOSE].x * image_width}, "f"{results.pose_landmarks.landmark[mp_holistic.PoseLandmark.NOSE].y * image_hight})")annotated_image = image.copy()mp_drawing.draw_landmarks(annotated_image, results.face_landmarks, mp_holistic.FACE_CONNECTIONS)mp_drawing.draw_landmarks(annotated_image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS)mp_drawing.draw_landmarks(annotated_image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS)mp_drawing.draw_landmarks(annotated_image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS)
这里我们打印了图片检测的结果,并分别画出人脸检测模型数据,人左右手的检测数据,以及人体姿态检测数据
#cv2.imshow("annotated_image",annotated_image)cv2.imwrite("4.png", annotated_image)cv2.waitKey(0)holistic.close()
画图完成后,我们可以显示图片方便查看,也可以直接使用OpenCV的imwrite 函数进行结果图片的保存,最后只需要close holistic检测模型,这里在检测多人的时候出现了问题,只是检测了单人,我们后期研究
图片检测
Mediapipe 模型的视频代码检测
当然,我们也可以直接在视频里面进行Mediapipe的模型检测
import cv2import timeimport mediapipe as mpmp_drawing = mp.solutions.drawing_utilsmp_holistic = mp.solutions.holisticholistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
首先跟图片检测一致,我们建立一个holistic检测模型,然后便可以打开摄像头进行模型的检测
cap = cv2.VideoCapture(0)time.sleep(2)while cap.isOpened():success, image = cap.read()if not success:print("Ignoring empty camera frame.")continueimage = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)image.flags.writeable = Falseresults = holistic.process(image)
首先我们打开默认摄像头,并从摄像头中获取检测的实时图片
cap = cv2.VideoCapture(0)while cap.isOpened():success, image = cap.read()
检测到图片后,我们便可以直接使用图片检测的步骤,进行模型的检测
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)image.flags.writeable = Falseresults = holistic.process(image)
这里我们使用到了cv2.flip(image, 1)图片翻转函数来增强数据图片,由于我们摄像头中的影像跟我们是镜像关系
cv2.flip(image, 1)
使用此函数便可以镜像我们的图片影像,最后把图片赋值给holistic模型进行检测
image.flags.writeable = Trueimage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACE_CONNECTIONS)mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS)mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS)mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS)cv2.imshow("MediaPipe Holistic", image)if cv2.waitKey(5) & 0xFF == ord("q"):breakholistic.close()cap.release()
检测完成后,我们便可以把数据实时进行绘制,以便在视频中实时进行结果的查看
视频检测
这里由于默认设置,线条与点的尺寸不太合适,我们后期慢慢优化
关键词: 机器学习 Google 人脸识别 Java Python OpenC
推荐阅读
运动型轿车是什么 运动型轿车与普通车有何区别?
运动型轿车凭借着外观酷炫,动力性能强的特点,深受国内众多消费者的喜爱。特别是在年轻消费者心目中,运动型轿车基本上是购车的首选。但是 【详细】
汽油清洗剂是什么 汽油清洗剂加在汽油里是干嘛的?
最近有很多车主反映加油的时候总是建议用汽油清洁剂。但是,大部分人还是不太了解,还有就是一部分人纳闷汽油清洗剂加在汽油里是干嘛的?汽 【详细】
中国最便宜的汽车是哪个 最便宜的汽车汇总
现在汽车已经成为了大家最常见的交通代步工具了。但是,依然还是有很多的家庭非常的需要代步工具,却买不起特别贵的汽车。所以今天,我们就 【详细】
伊莱克斯冰箱质量怎么样 伊莱克斯冰箱质量好不好?
伊莱克斯冰箱质量怎么样:在2018年全球500强企业中,伊莱克斯排名第162位,在2020年全球2000强企业中,伊莱克斯排名第1965位,可见伊莱克斯 【详细】
劳动保护用品是什么 劳动保护用品有哪些?
劳动保护用品有哪些?劳动防护用品分为特殊劳动防护用品和一般劳动防护用品,一般劳动防护用品是指未列入目录的一般劳动防护用品。以下产品 【详细】
相关新闻
- 动态:苹果在iOS 16.3 Beta 2中调整“SOS紧急联络”功能触发方式
- 离谱!小米员工吐槽Redmi新机支持双SIM卡+TF卡
- 环球热头条丨B站增发新股约4.1亿美元,用于回购可转债
- 环球热门:relax什么意思(“神经紧绷”英语怎么说?一个英语单词搞定,so easy)
- 世界快看点丨藕粉的作用(冬吃莲藕补中益气健脾胃)
- 中国人得过诺贝尔奖的是谁 中国人得过诺贝尔奖的有几人?
- 玛雅文明是什么 玛雅文明算一个高度发达的文明吗?
- 环球信息:如何在国内正常使用TikTok?
- 女闺蜜是什么意思(女生喜欢你的几大表现 你遇到过几个?)
- 快资讯丨shift键(Excel 中 Shift键的奇妙玩法,你知道几个?)
- 斐纳TOMEFON使用状况 斐纳TOMEFON吸尘器好不好用?
- 国产手机排名前十 国产手机排名前汇总
- 环球观点:至今还没有阳的人,他们天赋异禀,还是另有隐情?研究结果来了
- 新动态:iPhone 15 太炸了,标准版有大提升
- 全球即时看!vivo拒绝高价低配:骁龙870+144Hz屏,12GB+256GB跌至1769元
- 实现高并发秒杀的七种方式
- 全球看热讯:3D渲染引擎 HOOPS Visualize 2023全新发布-增加对顶点着色器支持
- 世界看热讯:「升级」Hubstudio多账号安全管理浏览器之扩展中心上线啦!
- 汽车早报 - 消息称蔚来布局百万元级别电动车 广汽称将继续为讴歌中国客户提供售后服务
- 今头条!车轮上的2022∣新能源与汽车出口带动:全国乘用车零售量同比增长1.9%