氧化镓,第四代半导体来了?
第四代半导体材料主要是以金刚石、氧化镓、氮化铝为代表的超宽禁带(UWBG)半导体材料,禁带宽度超过4eV,以及以锑化物(GaSb、InSb)为代表的超窄禁带(UNBG)半导体材料。在应用方面,超宽禁带材料会与第三代材料有交叠,主要在功率器件领域有更突出的特性优势;而超窄禁带材料,由于易激发、迁移率高,主要用于探测器、激光器等器件的应用。
用氮化铝镓(AlGaN)为主要材料制造的深紫外光(deep ultraviolet, DUV)发光二极体(light-emitting diodes, LEDs)元件,其优异的光学性质和体积小的特性,逐渐取代水银灯和氙气灯,成为携带型生化检查系统、净水器、紫外光微影曝光机等的光源。藉由各种改善磊晶层结构品质的方法,可以进一步增进现阶段氮化铝镓(AlGaN)深紫外光发光二极体的光学性质。其中一个方法是在氮化镓(GaN)和氮化铝镓(AlGaN)的侧壁上引入一层纳米级氧化镓磊晶层。
(资料图)
本文将呈现如何应用宜特材料分析实验室的穿透式电子显微镜(TEM)分析技术鉴定俗称第四代半导体-氧化镓(Ga2 O 3)磊晶层的晶体结构,晶体形貌与组成。
为何氧化镓(Ga 2 O 3)被称为第四代半导体?
氧化镓(Ga2 O 3)被称为第四代半导体的原因是,其超宽能隙的特性,相较于相较于第三代半导体(化合物半导体)碳化硅(SiC)与氮化镓(GaN),将使材料能承受更高电压的崩溃电压与临界电场。
一、 氮化铝镓深紫外光发光二极体元件结构
用有机金属化学气相沉积(Metal-organic Chemical Vapor Deposition, MOCVD),制作的氮化铝镓深紫外光发光二极体薄膜元件之剖面图如图一(a)所示。先在蓝宝石(sapphire)基板上长一层氮化铝(aluminum nitride, AlN)做为缓冲层,减少后续氮化铝镓磊晶层的差排缺陷,长上二层不同铝浓度的氮化铝镓磊晶层后,再长上多重量子阱(multiple quantum well, MQW)层、电子阻挡层(electron-blocking layer, EBL)、氮化镓(gallium nitride, GaN)等纳米磊晶层。
接下来用微影制程将此MOCVD 制作的元件顶部蚀刻成如图一(b)所示的平台形状,然后在氧化气氛的高温中热处理,使氮化铝镓磊晶层侧壁和氮化镓表面生成氧化物,最后再用磁控溅镀(magnetron sputtering)法镀上一层100 纳米厚的高纯度二氧化硅,如图1一(c)所示。
图一:氮化铝镓(AlGaN)深紫外光发光二极体元件的剖面图示意图。(a)MOCVD成长的二极体元件;(b)用微影制程蚀刻元件顶部形成平台后;(c)经氧化热处理+ SiO2 镀层后。(来源:宜特科技)
二、 TEM 影像与电子绕射分析鉴定反应生成相
先用聚焦离子束(focus ion beam, FIB)在元件顶部选定的位置切割,制成横截面型TEM(cross-section TEM, X-TEM)试片,然后对一系列不同热处理的氮化铝镓试片进行TEM/STEM 影像分析和电子绕射,目的在鉴定氮化铝镓磊晶层侧壁和氮化镓表面形成的氧化物为何物。
图二显示二张中低倍率的TEM 明场像,分别为原始氮化铝镓试片与900ºC,20 分钟热处理的氮化铝镓试片的横截面结构。仔细比较图二a 与图二b,可以发现热处理后的试片,在氮化镓层顶部和氮化铝镓层侧壁共有三个新相(phases)产生,如图二b 中标示1、2、3 的区域。
图三中比较900ºC,20 分钟热处理的氮化铝镓试片的STEM 明场像和环形暗场像。综合图二和图三中的TEM 与STEM 影像,宜特材料分析实验室初步归纳出STEM 环形暗场像是此材料系统的最佳影像分析技术。我们在将影像倍率再往上提高,进一步确认STEM 暗场像在此材料系统的适宜性。
如图四所示,STEM 环形暗场像,明显比STEM 明场像更清楚区分各新形成的生成物。从以上这些初步的影像资料中,生成物影像明暗对比的变化特性,推断第一相和第三相为多晶,且晶粒大小只有数纳米,而第二相有可能为单晶结构。
图二:TEM 明场像显示氮化铝镓深紫外光发光二极体元件的横截面结构。(a)MOCVD生长后,热处理前;(b)900ºC/20 分钟热处理后。(来源:宜特科技)
图三:900ºC/20 分钟热处理后,氮化铝镓深紫外光发光二极体元件的横截面结构。(a) TEM明场像;(b) STEM环形暗场像。(来源:宜特科技)
图四:二组中高倍率STEM 影像显示900ºC/20 min,热处理后二极体元件顶部与侧壁的氧化层结构。(a)&(b)分别为GaN 顶部与侧壁的氧化层结构的STEM 明场像和环形暗场像;(c)&(d)分别为AlGaN 侧壁的氧化层结构STEM 明场像和环形暗场像。(来源:宜特科技)
图五则显示一组选区绕射图案(selected area diffraction pattern, SADP)和一低倍率STEM 明场像。这些SADPs 分别对应氮化镓层、氮化铝镓层、和三个生成物(图5a)。氮化镓层和氮化铝镓层都是磊晶层(epitaxial layer),对应的SADPs 指出TEM 观察方向都是[1 1 -2 0] 极轴(zone axis)方向。三个生成物的SADPs 目前尚未完全解出,但是其形貌都是单一组点状绕射图案,而且非常类似。此种形式的SADPs 指出该分析区域是单晶,而且这些单晶的某个晶向都和氮化镓层(氮化铝镓层)的[0002] 晶向逆时针偏转约10 度。这个从SADPs 的晶体分析结果和从图三与图四影像资料推论的晶体结果有所矛盾。
图五: 900ºC/20 分钟热处理后,氮化铝镓试片的低倍率STEM 明场像,与磊晶层的选区绕射图案。(a)低倍率STEM 明场像;(b)GaN 的SADP,z = [11 -2 0];(c)AlGaN 的SADP,z = [11 -2 0];(d)第1 相生成物的SADP;(e)第2 相生成物的SADP;(f)第3 相生成的SADP。
针对前述TEM/STEM 分析结果的矛盾,我们进行临场TEM/STEM 影像和电子绕射交互分析观察,确定在氮化镓层上方/侧壁和氮化铝镓侧壁,经高温热处理后产生的生成物都是单晶。第一相生成物和第三相生成物内的明暗变化,并非因为晶粒产生的绕射对比,而是试片本身密度变化产生的原子序对比。
从更高倍率的STEM 环形暗场像,如图六所示,我们更清楚辨认生成物为多孔性结构,暗色的区域(明场像中亮的区域)是空孔。第一相生成物空孔的尺寸明显数倍大于第三相生成物空孔的尺寸,第二相生成物算是致密的单晶结构,但其内仍有几个大空孔,其中一个如图六中白色箭头指处。造成第一相生成物和第三相生成物为多孔性结构的原因,推测可能是热处理温度过高,氧和镓与铝的交互扩散速率高于生成物原子堆积速率所导致的结果。
一般来说,用电子绕射图案解析晶体结构,必须从数个极轴方向的SASPs 推算才能得到确定的结果。由于目前只有一个极轴方向的SASPs,很难从这些有限的SADPs 中明确地推算出生成物的晶体结构。从SASP 模拟分析中发现b-Ga2 O 3 的[0 1 0] SADP 和图五(d, e, f)中的SADP 很接近,因此初步推断在GaN 层上的生成物有可能是b-Ga 2 O 3,而在AlGaN 层上的生成物则有可能是b-(Al x Ga 1-x)2 O 3。由于b-Ga 2 O 3 是单斜晶体,其SADP 的分析工作将会复杂许多。
图六:900ºC/20分钟热处理后,氮化铝镓试片的高倍率STEM 环形暗场像,解析生成物的显微结构形貌。白色箭头指处是一较大的空孔。(来源:宜特科技)
三、 STEM/EDS 分析-自我校正定量分析
图七显示一组由STEM/EDS 能谱影像(spectrum image)技术,获得的氮化镓和生成物之元素映像图(elemental maps)。这些元素映像图显示生成物的组成元素只有氧和镓,意指此生成物是镓氧化物。再用EDS 软体从二氧化硅层拉一垂直相界(phase boundary)的直线(图八(a)中的浅蓝色箭头),通过氧化物到达氮化镓层,算出沿此直线各元素的浓度变化。
图八(b)显示计算出来的结果,此计算结果是由TEM 的EDS 软体用内存的K 因子(K factors),进行成份定量分析。这样EDS 定量分析方法称为无标准试片定量分析法(standardless quantitative analysis),此方法计算的结果目前已广泛被各种科学与工程类的论文期刊接受。
在图八(b)的EDS 直线浓度变化曲线(line profiles)内,对应氧化物1B 的区段内,找出一平坦的区段,推算氧化物1B 的成份,得到该氧化物的组成元素比(O/Ga)为1.23,相当于化学式为Ga5 O 6。这是EDS 侦测器接收从试片发出的元素X-光讯号,加上资料库内的K因子后计算出的氧化物成分,然而文献中没有这种成份的氧化镓。
当定量分析的元素包含碳、氮、氧等轻元素时,即使TEM 试片属薄片(thin foil)型试片,吸收效应仍然相当显著,只是经常被忽略,造成相当大的误差而不知觉。仔细检查图八(b)可以发现,在直线浓度变化曲线的左侧二氧化硅区段中O/Si 比值小于2,而右侧氮化镓区段中N/Ga 比值明显小于1。利用这二侧已知成份的二氧化硅层和氮化镓层,对此直线浓度变化曲线做自我校正(self-calibration)修正。
经修正后的直线浓度变化曲线如图八(c)所示,此时从相同平坦区段推算的组成元素比(O/Ga)为1.53,相当于化学式为Ga2 O 3,符合文献中报导的氧化镓组成,也符合化学键价数的搭配。
在TEM(STEM)/EDS 成份定量分析中,利用待分析物周围已知成份的相,做自我校正计算,进一步提高EDS 定量分析的准确度称为EDS 自我校正定量分析法(self-calibration EDS quantitative analysis),此技术是宜特实验室自行开发的TEM 材料成份分析技术之一,校正后的结果比只经由EDS 内建软体的计算结果准确许多。
主要的原因在于所有的TEM/EDS 内建软体都不考虑元素X-光在TEM 试片内的吸收效应。然而当EDS 定量分析牵涉到碳、氮、氧等轻元素时,因这些元素的X-光能量很小,吸收效应产生的误差就变成相当明显。对于含轻元素的化合物,透过EDS 自我校正定量分析法,宜特材料分析实验室的TEM/EDS 定量分析结果比其他TEM 分析实验室更为准确。
图七:900ºC/20 分钟热处理试片的氮化镓和氧化物的元素映像图。(a)分析区域的STEMBF 影像;(b)镓元素映像图;(c)氮元素映像图;(d)氧元素映像图;(e)硅元素映像图;(f)综合元素映像图。(来源:宜特科技)
图八:900ºC/20 分钟热处理试片氮化镓和氧化物的EDS 直线浓度变化曲线。(a)分析区域的STEM BF影像;(b)EDS 内建程式计算的直线浓度变化曲线;(c)经自我校正定量法校正后的直线浓度变化曲线。(来源:宜特科技)
*声明:本文系原作者创作。文章内容系其个人观点,我方转载仅为分享与讨论,不代表我方赞成或认同,如有异议,请联系后台。
关键词: 美好,一直在身边
推荐阅读
iOS13正式版推送 iOS13正式版推送值得更新吗?
苹果发布iOS13 5,iOS和iPadOS13 5系统正式版发布,系统新增加了多项功能,用户在安装了正确的开发人员配置文件后可以从Apple开发人员中心 【详细】
虎门大桥怎么样了 虎门大桥没有问题可以恢复通车了吗?
关于虎门大桥已经连续几天成为热门话题了,5月5日,最开始为了保障安全,对交通实行双向封闭。5月10日,组织报告测评,而今天根据官方消息 【详细】
2025年取消燃油车 2025年取消燃油车是真的吗?
相信很多人都听说过中国2025年取消燃油车,接下来小编就带大家介绍一下相关知识,大家可以了解一下。汽车一般使用汽油、柴油等化石燃料作为 【详细】
未成年打赏可退还是真的吗?未成年打赏可退有什么法律依据?
今日,未成年打赏可退还的消息引发人们的热切讨论,未成年人网络打赏引发的纠纷,多年来成为人们关注的社会热点问题,那么未成年打赏可退还 【详细】
首都第二国际机场在哪里 首都第二国际机场为何选址大兴?
首都第二国际机场为何选址大兴?大兴位于北京的南部,为什么选在南边建设机场?现在北京机场有几个?为了确保首都的安全,南部修建了北京第二 【详细】
相关新闻
- 氧化镓,第四代半导体来了?
- 【当前热闻】2023桌面PC市场展望:核心硬件换代 价格决定成败
- 今日最新!比尔盖茨又预言了,将有大事发生
- 米家手持无线吸尘器1C发布 吸入续航双强劲 清洁小怪兽
- 【世界快播报】哪些地方禁止使用手机
- 环球新资讯:搭载骁龙845系统:2698元刷新性价比魅族16出世!
- 环球新消息丨奥林巴斯Tough TG-6三防相机,卓越画质不止于户外
- 全球今日讯!微信如何解除已绑定的银行卡!
- 当前信息:网店击败实体店后,要小心直播带货开始对中国商品进行定位
- 今日热讯:2022年手机销量谁最高?全年出货量报告出炉
- 世界今头条!Web3入门笔记(一)密码学的苹果
- 想换新手机,运存选择6G、8G还是12G?内行人建议你这么选
- 今日看点:想要找充电接口?看看路边的长凳上,这款太阳能智能坐凳真秀~
- 【环球新要闻】多亲AI平安Q发布儿童4G智能对讲电话 不用插卡就能通话
- 当前速读:苹果发布 HomePod 新系统,激活隐藏功能
- 世界微资讯!龙胆泻肝丸的副作用_龙胆泻肝丸功效与作用
- AK70系列新品对比 定位相仿却有更大升级
- 环球快播:德龙电油汀,一键舒适温度均衡
- 海尔KKC电动牙刷,击退牙齿问题
- 世界时讯:联想拯救者Y9000X/R9000X 2021开放私人定制 专属定制 为战而生