描述性、诊断性、预测性和规范性数据分析的全面概述以及……
介绍
在数据科学和人工智能的快速发展中,采用了各种技术从数据中提取有价值的见解。数据分析和机器学习大致可分为四种主要类型:描述性、诊断性、预测性和规范性。这些方法中的每一种都有其独特的目的,并在各个领域的决策和解决问题中发挥着至关重要的作用。在本文中,我们将详细探讨这四种类型,重点介绍它们的主要特征、应用和在利用数据力量方面的重要性。
1. 描述性数据分析
描述性数据分析涉及以有意义的方式汇总和呈现数据,以概述其特征和模式。它主要侧重于理解过去和现在,而不对未来做出任何预测。描述性分析技术包括平均值、中位数、模式和标准差等统计度量,以及直方图、条形图和散点图等数据可视化方法。
(资料图片)
应用:描述性数据分析通常用于市场研究、商业智能和数据报告。它可以帮助企业了解客户行为、跟踪销售业绩并深入了解其运营的整体健康状况。
2. 诊断数据分析
诊断数据分析旨在确定数据中观察到的某些模式或事件背后的原因。它试图回答“为什么”的问题并理解变量之间的因果关系。这种类型的分析涉及进行深入的调查和统计测试,以发现影响观察到的结果的潜在因素。
应用:诊断分析在医疗保健等领域至关重要,用于识别疾病的根本原因,或在质量控制过程中识别导致制造缺陷的问题。
3. 预测数据分析
预测数据分析使用历史数据和统计算法对未来事件或结果做出明智的预测。它涉及构建预测模型,这些模型可以根据历史数据进行训练,然后用于预测未来的趋势或行为。预测的准确性取决于数据的质量和所选机器学习算法的适用性。
应用:预测分析可在不同领域找到应用,包括金融(信用风险评估)、营销(客户流失预测)和天气预报,有助于根据预期结果做出主动决策。
4. 规范性数据分析和机器学习
规范性数据分析不仅仅是预测未来事件;它提出了实现预期结果的最佳行动方案。它使用先进的机器学习技术来模拟场景,并根据预定义的目标和约束确定最佳行动方案。
应用:规范性分析广泛用于供应链管理、资源优化和个性化医疗。例如,它可以为物流公司推荐最有效的配送路线,或者根据患者的病史和遗传信息为患者提出个性化的治疗方案。
法典
为了演示使用 Python 进行描述性、诊断性、预测性和规范性数据分析的概念,我将为每种类型的分析提供代码片段。我们将使用学生考试成绩的假设数据集进行说明。
描述性数据分析
描述性分析旨在汇总和可视化数据,以深入了解其特征。我们将计算基本统计度量并创建可视化效果。
import pandas as pdimport matplotlib.pyplot as plt# Hypothetical dataset of student exam scoresdata = {"StudentID": [1, 2, 3, 4, 5], "ExamScore": [85, 78, 90, 82, 92]}df = pd.DataFrame(data)# Calculate mean and standard deviationmean_score = df["ExamScore"].mean()std_dev = df["ExamScore"].std()print("Mean Exam Score:", mean_score)print("Standard Deviation:", std_dev)# Create a histogram to visualize the distribution of scoresplt.hist(df["ExamScore"], bins=10)plt.title("Distribution of Exam Scores")plt.xlabel("Exam Score")plt.ylabel("Frequency")plt.show()
诊断数据分析
诊断分析旨在了解观察到的模式背后的原因。我们将执行相关性分析以查找变量之间的关系。
import pandas as pd# Hypothetical dataset of student exam scores and study hoursdata = {"StudentID": [1, 2, 3, 4, 5], "ExamScore": [85, 78, 90, 82, 92], "StudyHours": [4, 3, 5, 3, 6]}df = pd.DataFrame(data)# Calculate correlation between exam scores and study hourscorrelation = df["ExamScore"].corr(df["StudyHours"])print("Correlation between Exam Scores and Study Hours:", correlation)Correlation between Exam Scores and Study Hours: 0.9575129564099746
预测数据分析
预测分析旨在对未来结果进行预测。我们将使用简单的线性回归模型来根据学习时间预测考试成绩。
import pandas as pdfrom sklearn.linear_model import LinearRegression# Hypothetical dataset of student exam scores and study hoursdata = {"StudentID": [1, 2, 3, 4, 5], "ExamScore": [85, 78, 90, 82, 92], "StudyHours": [4, 3, 5, 3, 6]}df = pd.DataFrame(data)# Prepare data for modelingX = df[["StudyHours"]]y = df["ExamScore"]# Create and train a linear regression modelmodel = LinearRegression()model.fit(X, y)# Predict exam scores for new study hoursnew_study_hours = [7, 8, 9]predicted_scores = model.predict(pd.DataFrame(new_study_hours, columns=["StudyHours"]))print("Predicted Exam Scores for New Study Hours:")for i in range(len(new_study_hours)): print(f"Study Hours: {new_study_hours[i]}, Predicted Score: {predicted_scores[i]}")Predicted Exam Scores for New Study Hours:Study Hours: 7, Predicted Score: 97.17647058823529Study Hours: 8, Predicted Score: 101.38235294117646Study Hours: 9, Predicted Score: 105.58823529411765
规范性数据分析
规范性分析根据预定义的目标和约束推荐最佳行动方案。我们将使用一个简单的优化问题来找到最高考试分数,同时考虑学习时间限制。
import pandas as pdfrom scipy.optimize import minimize# Hypothetical dataset of student exam scores and study hoursdata = {"StudentID": [1, 2, 3, 4, 5], "ExamScore": [85, 78, 90, 82, 92], "StudyHours": [4, 3, 5, 3, 6]}df = pd.DataFrame(data)# Define the objective function to maximize exam scoresdef objective_function(x): return -(df["ExamScore"] * x).sum()# Define the constraint function for study hours (total study hours <= 20)def constraint_function(x): return 20 - (df["StudyHours"] * x).sum()# Initial guess for the optimizationx0 = [1, 1, 1, 1, 1]# Define the constraintsconstraint = {"type": "ineq", "fun": constraint_function}# Perform optimizationresult = minimize(objective_function, x0, constraints=constraint)# Extract the optimal study hour allocationoptimal_study_hours = result.xprint("Optimal Study Hour Allocation:")for i, student_id in enumerate(df["StudentID"]): print(f"Student {student_id}: {optimal_study_hours[i]} hours")Optimal Study Hour Allocation:Student 1: -4.4565814352035854e+24 hoursStudent 2: -5.0932735987608005e+28 hoursStudent 3: -6.576581741048669e+29 hoursStudent 4: 1.0960680991161268e+30 hoursStudent 5: -3.7006777519270405e+24 hours
注意:提供的代码片段仅用于演示目的,可能不代表实际场景。在实际应用中,您需要仔细处理数据预处理、模型选择和性能评估。此外,此处使用的数据集很小且是虚构的;现实世界的数据集可能需要更复杂的技术和模型来进行分析和预测。
结论
总之,描述性、诊断性、预测性和规范性数据分析以及机器学习技术是数据驱动决策过程中必不可少的工具。每种类型的分析都有不同的目的,并提供对数据不同方面的独特见解。描述性分析有助于理解历史趋势,诊断分析有助于确定观察到的模式的根本原因,预测分析预测未来事件,规范性分析建议最佳行动。随着数据科学和机器学习的不断发展,这些分析方法的集成将进一步使组织能够充分利用其数据的潜力并推动各个领域的创新。
关键词:
推荐阅读
月壤形成的主要原因 月壤与土壤有什么区别
月壤形成的主要原因月壤形成过程没有生物活动参与,没有有机质,还极度缺水干燥;组成月壤的矿物粉末基本是由陨石撞击破砰形成,因此,粉末 【详细】
域名抢注是是什么意思?投资角度来看什么域名好?
域名抢注是是什么意思域名抢注是通过抢先注册的方式获得互联网删除的域名的使用权。域名是由点分隔的一串数字,用于标记一台计算机或一组计 【详细】
捷达保养费用是多少?捷达是哪个国家的品牌?
捷达保养费用是多少?全新捷达的保修期为2年或6万公里,以先到者为准,新车可享受一次免费保养,首次免费保养在5000-7500km或1年内进行。如 【详细】
天然气泄露会造成爆炸吗?天然气泄漏怎么办?
天然气泄露会造成爆炸吗?家里用的天然气如果泄露是会发生爆炸的。当空气中含有混合天然气时,在与火源接触的一系列爆炸危险中,就会发生爆 【详细】
四部门明确App收集个人信息范围 个人信息保护范围判断标准
四部门明确App收集个人信息范围近日,国家互联网信息办公室、工业和信息化部、公安部、国家市场监督管理总局联合印发《常见类型移动互联网 【详细】
相关新闻
- 描述性、诊断性、预测性和规范性数据分析的全面概述以及……
- 算力需求急速攀升,DPU成为行业香饽饽
- 实名制的手机卡不用了,一定要注销吗?移动内部员工说出实话!
- 永成物业注册资本从3100万元增至5500万元,增幅77.42%
- 北京大学:“帐号”已修改为“账号”
- 天亿马收关注函 要求说明子公司购置房产的原因及必要性
- 内维尔:凯恩会说他想去曼联,红魔签下他就能比肩曼城阿森纳
- 好评率高于96%!8月换手机,这4款最是心中所属,“华米OV”均在
- 宽带光猫后面的四个网口,原来区别很大,插错了会导致网速变慢
- “下一个深圳”诞生?马云和刘强东相继投资,华为也在此落户
- 重要进展!南昌东站传来新消息!
- 1944米!世界第一埋深高速公路隧道建成
- 4199元起!荣耀MagicBook X Pro系列锐龙版正式发布
- 三菱汽车最新款suv多少钱 三菱suv新款价格是多少钱
- 运动是给孩子最好的“健脑药”,暑假这些运动可以多做……
- 麻了!包含中科院TOP,共16本期刊被标记为“On Hold”状态!
- 马鞍山市和县:科学知识零距离 奇思妙想展风采
- 爱在落坡岭,致敬每一位伸出援手的热心人!
- 车都撞烂啦!疲劳加分心真的很危险,出租车追尾大货车——
- 反应的转化率怎么算?反应的转化率计算方法